84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Checkout and Launch Control System
Real Time Control Application Software

Development Plan

84K00070-002

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
RTC Applications Software Devel opnment Pl an

Appr oval

Ret ha Hart Ral ph Esposito

CLCS Program nmanager USA CLCS Program Manager

Concurrence :

Benj ami n Bryant Marty W nkel

CLCS Applications Software USA CLCS Applications Software

Jeff Wheel er

CLCS User Liaison

Ri chard I kerd Ken Hal e

Application Product Team (USA) Application Product Team (NASA)

Nor m Pet ers
Application Product Team (USA)

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Prepared By : Real Time Control Applications Software
United Space Alliance
Kennedy Space Center, Florida

Supporting Docunment Note: Acronyns and definitions of many conmmon CLCS terns
may be found in the followi ng docunents: CLCS
Acronyns 84K00240 and CLCS Project d ossary
84K00250.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
REVI SI ON HI STORY
REV DESCRI PTI ON DATE
Basi ¢ Pronot ed per approval by signatories. Updated to standard |5/12/98

format. |jp

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

LI ST OF EFFECTI VE PAGES

Dates of issue of change pages
are:

Page No. A or D* | ssue or Change No. CR No. Ef fective Date**

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Tabl e of Contents

1. INTRODUGCTION ...ttt ettt e ettt e e et ettt bbb oo e e e ettt e bbb e e e e e e e eestba e e e e e e eesesnn e e e e eeeeeesnnnnn 1
L1 PURPOSEt e e ettt oo e e e ettt et e e e e e e e et bba e e e e e e e e eeeeaaaas 1
1.2 SCOPKE. ..ot e e e ettt aa e e e e e et ttaa e e aeeeeraaaas 2
1.3 REFERENCE DOCUMENTS ..ottt e ettt e e e e e ettt e e e e e e eeeaaa e aeeas 2
1.4 RTC APPLICATION SOFTWARE GOALS ...ttt e et e e e e e e eaeaanns 2
1.5 PRODUCTIVITY ENHANCEMENT METHODS ...t 3

2. GENERAL INFORMATION ...ttt ettt ettt e ettt e e et e e et b b e e e e e e e e eebba e e e e e e eeesebna e as 1
2.1 APPLICATION SOFTWARE PARTICIPANTS ...ttt ettt e ettt eaeaeees 1
2.2 CHANGE SOURGCES.ottt e ettt e e e e e et e e bba e e e e e e eeesaa e e e eeeeennaans 1
2.3 CHANGE EFFORT ettt e e e et e ettt e e e e e e e ee bbb e e e anaaaaaaees 1
2.4 SOFTWARE COMPONENT CRITICALITY 1.ttt ettt ettt e e e e e enaba e e e e e eeenees 2

3. APPLICATIONS DEVELOPMENT INFRASTRUCTUREcootiiiiiiee e 1
3.1 STREAMLINED FUNCTIONAL STRUCTURE ...ttt e e eeees 1

3.1.1 Application Software Project Management.............ccuuuuiuiiiiiii e 1
3.1.2 Application SOtWare ProdUCE TOAIMccoueeeeeeeeeeeee e 1
3.1.3 ANalysis @nd DESIGN GIOUP.ccoeeeeeeeeeeeee e 2
3.1.4 Integrated ProdUCE TOAITISccooeeeeeeeeee e 2
3.1.4.1 Requirements DefiNitioN TEAIMooiiiiiiiiii e e et e e e e e eatb e e e e e e eeatt e e e eeeeeannnns 3
3.1.4.2 Software DeVelOPMENT TEAIMi et e et e e e e e e ettt e e e e e eeeasa e e e eeanaaaaaaeas 3
3.1.4.3 Software Validation TEAIMuuiii e et e e e e e ettt e e e e e eeeana e eeana e e eaaaes 3

3.2 RESOURCE POOL ...ttt s 4
3.3 ASSIGNMENT OF RESPONSIBILITY TO AN APPROPRIATE LEVELcoovviiiiiiiiiiiiiiiieiii, 4
3.4 AUTOMATED COMPONENT TESTINGotttiiiiiitiiiiiiiiiieiueteeeiesseaessssssssssesesesseseessesseseeeeeeeseeeeeeenee 6
S5 ITERATIVE TESTING ...ttt e ettt s e e e e e e ettt e e e e e e e e eeaba e e aneaeeeeas 6
3.6 BUILT-IN QUALITY PHILOSOPHYoiiiiiiiiiittiutiituietitteaetiesseseiesssesesbbeeseeeeessssaeseeeseesesseeseeesenneennnee 7
3.7 VALUE ADDED METRIC GATHERINGottt eeeeeeees 8
3.8 MEANINGFUL PRODUCT DOCUMENTATION.......ccttttitiiiiiiitiieiitineiteeeessessnsssnssssesseseseeeeneeeeeneeennee 8

4. RTC APPLICATION SOFTWARE DEVELOPMENT PROCESSING.........ccooiiiiiiiiieiiiees 1
4.1 CHANGE SCREENING PANEL PROCESSINGccutiiiiiiiiiiiiiiiiiiiiieeeeeeeee ettt 2
4.2 IPT STATEMENT OF WORK ASSESSMENTuiiiiiiiiiiiiiiiiiiiiiiiiiiiiebbiieebbsbbeeesseeeee e eeeeeeeeeeeeeeeeees 2

4.2.1 Major Statement Of WOIrk ASSESSIMEINLcoeeeeeeeeeeeeee e 3
4.2.2 Minor Statement Of WOk ASSESSIMEINTcoeeeeeeeeeeeeee e 3
A3 REVIEW PANELS ...ttt ettt e e ettt ettt e e e et e e ettbb e e e e e eeeatann e aeeaeeaeaaeennes 3
4.3.1 Application Change ReVIEW PANEL................ccouiiiii 3
4.3.2 Requirements REVIEW PANEI.............ccooiiiiieee 4
o T N |V =10] =T] 1 o PPN 4

e T = (= To |01 = To o (o To L1 o £ RSOOSR 5
4.3.2.3 RRP PIOCESS ...ttt ettt ettt e ettt e e e et e ettt e e e eaa e et e aa e e e e e et e e eaa s 5

4.4 1PT STATEMENT OF WORK IMPLEMENTATION ..ottt 6
4.4.1 Requirements Definition and CapIUIe................couuiiiiiiiii e 7
4.4.2 Requirements Analysis and AllOCALIONccoouiiiiiiiii 7
4.4.3 SOMWAIE DBSIGI ..., 8
W 0 (1= T =l o (00 [N o1 1 (o o RSP 8
N R @ AV = oY= PPN 8
N N o To [I Y 111 Vo SRR 9
o o e B o To | =T g Lo N = T o U =T [USSP 9
O 1S o [T o 1) g I o o o] PPN 9
R = 1 o 10
Y R [1 i I 1T PSRN 10

o o YA 1 (=To = Lo [=TS U] o o USRS 11

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

4.5 IPT VALIDATION AND USER ACCEPTANCE..... .. 12
45,1 VANAALION. ... 12
4.5.2 USEI ACCEPLANCE ...ttt ettt 13

A GLO S SARY ..ttt e —b bt b e e 1 e e bbb E bbbttt e ettt e e e e e e e A
B. RTC APPLICATION SOFTWARE CSCl...cootiiiiiiiiiiiiiiiiiiieiiieieeeieeeeeeeeeeseaeesssesssessseebesebeebaesebsebeeneennenee B

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

1.

The Real Tine Control (RTC) Application Software Devel opnent Plan (SDP) for
CLCS nust define the mechanisnms to enable rapid devel opnent of software to

satisfy CLCS nmil estones. This plan applies to both the CLCS initial
project developnment effort for RTC Application Software as well as
sustaining that software after initial developnent conpletion. RTC

Application Software developnment is a najor effort that nust be flexible
enough to capture existing requirenents and to simultaneously incorporate
both internal and external change drivers.

1.1 PURPCSE

This plan applies the concepts described in the overall CLCS System
Sof tware Devel opnment Pl an (84K00070-100). The CLCS System Software SDP
provides integration of the infrastructure (provided by system and
application services) to support application software conponents that
control and nonitor the Shuttle, GSE and facility hardware. Al t hough
simlar in concept, the RTC Applications Software Devel opnment Plan differs
fromthe System Software SDP for the follow ng reasons:

1. The RIC Application Software environment requires the active
participation of the personnel with systens know edge in all phases of
the process (e.g., validation testing being perforned by the user rather
than an I V&V team) that necessitates a devel opnent/sustaining plan that
is sufficiently different from the System Software world to warrant a
separ at e documnent.

2. The System Software SDP relies upon a structured review board concept to
ensure all project requirements are properly identified and captured.
The real m of Shuttl e/ GSE know edge is outside of the expertise of these
revi ew boards. The concepts presented in this docunment place the
responsibility for pr oper requirenents capture/definition and
i mpl erent ati on on personnel who are qualified and know edgeabl e for that
functi on. The review panels for RTC Application Software perform an
oversight and nmanagenent function rather than a technical review
function.

3. An internal applications team provides the day to day integration
bet ween application software and the system world. This method all ows
applications to support the big CLCS picture, while the teaming wthin
appl i cations supports the end user.

Alnost as inportant as the plan is the background information that drives
its creation. An understanding of the influences that nold the plan hel ps
capture, for future users, the all important ‘why?’. As the ‘why’ changes

over time, the process can be reevaluated. The following topics are part

of the CLCS application software plan:

Application software goals

Productivity enhancement methods

General information

Applications development infrastructure

Application software development processing

grwhE

The plan will explicitly define the differences between the RTC Application
Software development and the post-development sustaining process.

1.2

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
SCOPE

This docunent applies to all RTC Application Software devel oped to support
the CLCS project. It includes all reused and conmercial-off-the-shelf

(COrs) software except as noted.

1.3 REFERENCE DOCUMENTS

The foll owi ng docunents were used in the devel opnment of or are referenced
in this SDP:

84K00050 CLCS Program Managenent Pl an

84K00051 CLCS Project Plan

84K00052 CLCS Configuration Managenent Pl an

84K00053 CLCS Systens Engi neering Managenment Pl an
84K00070- 100 CLCS System Sof t ware Devel opnment Pl an

84K00230 CLCS HCl Style @uide and Standards

84K01700 RTC Application Software Docunentation Standard
84K01710 RTC Application Software Architecture Standard
84K01720 RTC Application Software |Inplenmentati on Standard
84K01830- xxx RTC Application Software Devel opnent Practices
84K07500- 010 CLCS Programmi ng Standard

DP- P-07- BASI C RTC Application Software Devel opnent Fl owchart

This plan is derived from the CLCS System Engi neering Mnagenent Plan
(SEMP), 84K00053, which defines the overall system engi neering process for
the CLCS project, and the System Software Devel opnment Pl an, 84K00070-100.
Sel ected information from these docunments is included in this docunent to
aid in understanding how the RTC Application Software devel opment process
fits into the overall system engi neering process.

1.4 RTC APPLI CATI ON SOFTWARE GOALS

The RTC Application Software SDP must establish a process that neets the
foll owi ng goal s:

1. Safety - The process nust ensure that personnel safety and Shuttle
hardware is not conprom sed

2. Cost - The process nust be inherently designed for efficiency to reduce
cost. There are several conponents of cost:

e The overhead required to devel op or make a change

e The cost of actually perform ng the work

e Potential nonetary savings as a result of inplenenting a change
e Long term product naintainability

3. Traceability - The process nust provide a level of traceability from
devel opnent/ change driver through inplenmentation

4. Accountability - The process nust provide a scheduling nethod to track
due dates (constraints) and a nmethod to capture the total cost of a
devel opnment effort.

5. Repeatability - The process nust be organized in such a way that it is
deterministic and repeatable for all Application Software devel oped
conmponent s.

84K00070-002 RTC Applications Software Development Plan

1.5

Operational Knowledge ‘Recapture’ - Application Software nust
the operational ‘whys’. When a system matures, ‘why’ a component or

process exists is often lost (only the ‘what’ and ‘how’ remain). RTC

Application Software development must maintain the ‘why’. One purpose

of this document is to ‘recapture’ the application process ‘why’ for

future users.

PRCDUCTI VI TY ENHANCEMENT METHODS

In any project, change is inevitable. Limited funding restricts the amount

of available resources, requiring development/change processing to be as
efficient as possible to meet project goals. Several different methods
will be used to enhance productivity:

1.

A common ‘style’ for all of applications software will eliminate much of

the specialization that occurs in applications software production.
While aspects of a particular end item may be unique, the implementation
‘style’ will be consistent across systems. This consistency allows the
creation of a ‘pool’ of software production personnel to assist in the
application software sustaining effort. While it will be necessary to
maintain a certain level of system specialization (to ensure
consistency), a “pool” of Software Engineers will provide flexibility in
managing both the development and sustaining efforts.

Reuse of common “building blocks”, developed using a common style, will
greatly enhance efficiency over the development of new products.
Placing these “building blocks” in a common, well documented location
further enhances reusability.

Teaming will be used to involve ‘core’ members in the entire process of
RTC Application Software activities. Core members include personnel
with expertise in system knowledge and software production. The
traditional ‘fence’ between hardware and software functions does not
exist with effective teaming.

Delineation of responsibility is a key factor in increasing
productivity. The number of ‘boards’, ‘reviews’, and signature
requirements will be the minimum required, without sacrificing safety or

quality control. Signatures must mean something. Change management
processing with large number of ‘checkpoints’ (signatures) typically
suffer from an ‘insulating effect. When the number of ‘required’
signatures increase, insulation occurs, the assumption being ‘someone
else’ will catch any problems.

Rapid prototyping will be used to establish the ‘best’ path that enables
RTC Application Software to reach its milestones. Prototyping allows
for the development of streamlined and efficient processes before
initiating all product teams. Prototyping is best performed by a
limited number of ‘pathfinder’ projects. The products developed during
the prototyping efforts should be treated as potential throw-away
products.

Communication of both success and problem areas encountered during the
process are integral to productivity. The focus, historically, has

been isolating and correcting problem areas. Applying success stories
(discovered from within RTC Application Software and from the external
world) throughout the development process has the potential to increase
overall productivity significantly.

Revision: Basic
May 12, 1998

capture

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

2.

This section describes the basic elenents that affect the devel opnent and
sustai ning of RTC Application Software. The applications workforce exists
to inplement the requirenments that are driven by varying change sources.
The level of effort necessary to performthis inplenentation is dependent
upon the type of developnent/change effort and the software conponent
criticality.

2.1 APPLI CATI ON SOFTWARE PARTI Cl PANTS

Conceptually, there are four ‘classes’ of personnel who support RTC
Application Software development:

* Management

* Integration

* Implementation (Development/Sustaining)
* User

Each ‘class’ of personnel has two primary elements associated with it:
e Systenms Know edge - provides the why and what of the software
« Software I|nplementation -provides the how of the software

2.2 CHANGE SOURCES

There are two primary sources of change that affect RTC Application
Software development: external drivers and internal drivers. Change is an
asynchronous process, with the type and number of drivers appearing at
random. The sources are:

1. External which includes Shuttle design center changes, KSC generated
(ground) system modifications and CLCS system software changes. These
changes typically are mandatory, requiring an implementation by a given
milestone. Often the change provides a funding source. These changes
are the most ‘random’ since the external source is driven by influences
outside RTC Application Software.

2. Internal change sources originate from within the applications
community. These include operational enhancements to existing software,
new software components that are required as the result of daily
operations and changes required to correct software discrepancies. Most
of these changes do not have mandatory milestones (excluding some
discrepancy processing), but do have a level of relative priority.
Because these changes occur from within, they offer the potential of
planning implementation.

During the CLCS development process, external change drivers will need to
be incorporated into CLCS application deliveries.

2.3 CHANGE EFFORT

The amount of effort to implement a change can be grouped into two
categories: minor and major. Change sources (both internal and external)
can impose different levels of effort. Adequate personnel resources must

be available to handle concurrent levels of effort. The RTC Application
Software process will make a distinction between minor and major change
processing.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998

1. A major change requires nore than a few days to inplenent. Oten the
change driver has an inpact on several systems. These changes require a
more formal integration effort to ensure adequate scheduling and

availability of resources. A change is considered major if the total
change inpl enentation effort estinmate exceeds thirty (30) man-hours (for
all activities).

2. A minor change effort is of limted scope, can be assessed quickly and

can be inplemented in a mninum of tine. In the classical change
managenment system the cost of performing a mnor change is often
dwarfed by the overhead required to support the change. A change is

considered minor if the total nmanpower estimate is |less than or equal to
thirty (30) man-hours (for all activities).

2.4 SOFTWARE COMPONENT CRI TI CALI TY

Sof tware conponent criticality is based on how the application software
conponent is used. Application conponent criticality may be different from

the criticality assigned to the hardware conponent. The criticality
classification is used to determne the | evel and type of quality oversight
required during the different phases of devel opnment. There are three

levels of ‘criticality’ in the RTC Application Software environment. A
component ‘bubbles’ to the highest level of criticality applicable.
Software Classification Practice 84K01730-102 defines the process for
classifying software modules.

1. Critical components are the “front line” items whose operation must be
ensured to allow a successful commitment of the vehicle to spaceflight.
As a minimum, this includes the Launch Sequencing/Launch Commit
function, and the propellant loading function. The criticality of these
components requires a level of quality support above the baseline.

2. Sensitive components encompass the control and monitor of items that, if
not operated properly, could result in personnel injury or hardware
damage. This class of items includes “reactive” responses to Off-
nominal conditions and the control of high energy systems (e.g.,
cryogencis, hydraulics, power units, etc.). The sensitivity of these
components requires a minimum level of independent quality support to
ensure proper validation of requirements.

3. Operational support components make up a large portion of the RTC
Application Software products and are classified as non-critical. These
are used for system monitor support and the control and monitoring of
non-hazardous systems and the monitoring of systems where “reactive
control” has been delegated to ‘external systems’ (e.g., a smart HIM,
on-board sequence, etc.). An operational support component would not
have an associated time critical safing function. The benign nature of
these components requires less quality oversight.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
3.

This section details the key structures that have been established for RTC
Application Software devel opnent. VWhen viewed as a whole, these itens

establish the infrastructure that enables applications to obtain its goals.
The infrastructure enables efficient change processing during both the
devel opnent and the sustaini ng process.

The RTC Application Software devel opment process provides the follow ng key
conponent s:

Streaml i ned functional structure

Resour ce pool

Assi gnment of responsibility to an appropriate |eve
Aut omat ed conponent testing

Iterative testing

Built-in quality phil osophy

Val ue added netric gathering

Meani ngf ul product docunentation

ONoGOARWNE

3.1 STREAMLI NED FUNCTI ONAL STRUCTURE

There are three levels of functional groups that directly participate in
RTC Application Software production:

3.1.1 Application Software Project Managenent

Application Software Project Managenent provides an interface to the CLCS
project managenent team during the developnent phase. Applications
managenment is chaired by NASA with support fromthe SFOC contractor. Both
the NASA and SFOC Applications Software project managenent team provide
overal | guidance, resource acquisition (hardware, software and personnel),
provisions for training, and project |evel issue resolution / status.
Application Software project nmanagenment charters the Application Software
Producti on Team (APT) to provide technical |eadership. As the project
nmoves into the sustaining node of operations, the Managenment interface wll
transition from CLCS to SFOC.

3.1.2 Application Software Product Team

The APT provides the working | evel technical direction and oversight of the
production of RTC Application Software. The APT is three individuals
representing Systens Know edge (Shuttle Engineering) and Software
Production (Applications Software). The APT functions as a single ‘unit’

with each member having knowledge in all the processes required for

applications development. When an area of specialization is required, the

APT member with the specific expertise takes the lead. The APT charters

Integrated Product Teams (IPTs) to provide specific application software

products. The APT interfaces with Systems Software to resolve
Applications/System Software issues. The allocation of resources and

resolution of inter-IPT issues are also APT functions. The APT provides

common standards, practices, and development tools to all IPT’s.

3.1.3

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Anal ysi s and Design G oup

The Analysis and Design Goup (ADG is a collection of people fromboth the
Systenms Know edge and Software Production disciplines. Their purpose is to
translate the User Requirenments provided by the individual Shuttle

Engi neering groups into a Functional Requirenents Docunment (FRD). The
menbers of the ADG are not assigned to an IPT. While nenbers of the ADG
interact with | PTs associated with the User Requirenents they are
translating, the ADG is independent fromthe IPTs.

During this effort, the ADGis responsible for

e Coordinating with the Shuttle Engi neering groups to ensure correct
interpretation of the User Requirenents.

e Elimnating duplication of requirenments by identifying those
requi renents that are common between systens. This paves the way
for infusing software reuse into the devel opnment effort.

e Ensuring all requirements are testable and do not contain any
i mpl erent ati on specific details

3.1.4 Integrated Product Teans

Each i ndi vidual RTC Application Software IPT is a collection of people with
a diverse set of skills that are tasked to deliver a CLCS application
software capability. The scope of an IPT may enconpass multiple, related

syst ens. | PTs provide an oversight function to the software devel oprment
effort to ensure User Requirenents are satisfied and that the end users
becone famliar with the software on an increnent basis. Each IPT is

conpri sed of
1. Systens Know edge personnel (e.g., Hardware Engi neering, System
Engi neering, Test Engi neering)
2. Software Production personnel (e.g. Software Engineers, Software
Devel opers)
3. Simul ation Support personne
4. OGthers as required

Each IPT is conprised of snaller sub-teans that perform the work assigned
to them Figure 3-1 provides an illustration of an |PT structure. The IPT
is the nechanismfor coordinating the activities of these sub-teans.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Integrated Product Team

Requirements
Analysis
Group

Software
Development

User Requirements
Definition

Validation Testing
and
OMI Update

Figure 3-1 : Integrated Product Team Structure

3.1.4.1 Requi rements Definition Team

The responsibility of this sub-teamis to capture the user requirenents in
the Functional Requirenments Docunment. This teamis conprised of
representatives fromthe Shuttle Engineering discipline, Software

Engi neering and the ADG

3.1.4.2 Sof t war e Devel oprment Team

Upon conpl etion of the Functional Requirenments, the Software Devel opnent
Team transforns the FRD requirenments into a software inplenentation. This
teamis conprised of individuals know edgeabl e on software devel opnent
practices, |anguages and tools. This teamis responsible for:
* Devel opi ng design docunentation, software code and for performng
unit and integrated debug testing

e Muximzing the reuse of software conponents to reduce the
duplication of code and testing

e Providing coordination with the IPT on technical issue resolution
and schedul e progress

e Providing any sinmulation math nodel upgrades that are a result of
new requirenents

3.1.4.3 Software Validation Team

The Software Validation Teamis responsible for the final validation
testing of the software devel oped for the IPT and for the update of

exi sting Operations and Miintenance Instructions (OMs) to incorporate use
of the new software. This teamis conprised primarily of Shuttle

Engi neering personnel w th assistance fromthe Software Devel opnent Team as
required. This teamis responsible for

e Devel opnment of all validation test procedures. These procedures
will test the software against the Functional Requirenents
Docunent .

e Conducting all validation testing.
e Update of all OMs affected by the software changes.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

3.2 RESOURCE POCL

The APT is responsible for the allocation (by nunber) of Software
Production and Systens Know edge personnel to perform applications
activities (acquisition of identified resources is perforned by
managenent). In the sustaining environnent, each IPT will be allocated a
basel i ned manpower equivalent, typically systens know edge and software
production individuals (on a potentially part tine basis). This allocation
is designed to provide each IPT with the capability to perform m nor change
processing quickly and efficiently. For major changes, the IPT wll
identify resource requirenents to the APT. The APT is responsible for
prioritization of tasks when the resource pool approached being enpty.

3.3 ASSI GNVENT OF RESPONSI BI LI TY TO AN APPROPRI ATE LEVEL

Providing a solid infrastructure which includes a charter (definition of
responsibility) and a common approach, the RTC Application Software process
assigns the responsibility for producing products at the |owest |evel

possi bl e. The key in the assignnent is establishing open lines of
communi cati on between the responsible functions. Problems will be
communi cated before they beconme issues and non-i ssues need not be

continually ‘statused’ by higher levels. The bulk of the applications
production occurs at the IPT level and this is where the largest portion of
responsibility resides. Figure 3-1 illustrates the RTC Application
Software Functional Structure.

- Overall Quidance
RTCApplication Software - Resorce Acquisition
- Project Issue Resolution/ Status
Project Management - Charters APT

Technical Drrection

l Application
Product Team
Analysis and
Design Goup
IPT

Figure 3-1 RTC Application Software Functional Structure

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

1. Project Managenent has the follow ng responsibilities:
e This oversight functionality is conprised of:
* NASA Application Software Division Chief
e SFOC RTC Application Software Manager
e Overall project guidance

* In the devel opnent phase, provide a common focal point for al
non-techni cal project level issues (e.g., delivery schedul es)

* In the sustaining phase, provide a comon focal point for ensuring
the production activities fit within the scope of the Shuttle
program gui del i nes.

 Budget and Resource Managenent

Acquire the resources necessary to devel op and sustain RTC Application
Sof tware through determ nati on and managenent of the required | abor
and non-1abor budget. This commonly includes:

* Acquisition of personnel

e Acquisition of any hardware required to devel op RTC Application
Sof t war e

e Acquisition of COTS Software packages required to devel op RTC
Application Software

e ldentification and acquisition of training for devel opnent and
user personnel

2. The APT has the following responsibilities:

e The APT is conprised of:
e Systens Know edge Representative
e Software Production Representative
* NASA Application Software Division Representative

e Charters each application | PT and establishes core participants
e Uses the master RTC Application Software delivery schedul e as

i nput

» Identifies a “focal point” for each sub-team within the IPT

* Performs the integration function among IPTs and between RTC
Application Software and the CLCS project (on a technical level)

* Provides an oversight function to ensure commonality (in
appropriate areas) across all IPTs

+ Allocates resources to meet deliveries/schedules
* Resolves inter-IPT issues

» Coordinates resolution of CLCS issues pertaining to RTC
Application Software

« Coordinates with System Software services for deliveries and
their contents

* Provides common processes, tools, directions
* Responsible for the development and maintenance of this document

* Responsible for the development and maintenance of all standard
practices and guidelines associated with Applications Software

* Responsible for defining and evolving the Applications Software
design standard

* Provides input to the CLCS programming standards and guidelines

* Chairs the Application Change Review Panel (ACRP) and the
Requirements Review Panel (RRP)

* Provides development status to Delivery Manager
e Presents IPT concepts to CLCS Concept Design Panel

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

3. The Analysis and Design G oup has the follow ng responsibilities:
e The ADG is conprised of:
e Systens Know edge Representatives
« Software Production Representatives
e Definition of the Functional Requirenments Docunent format

* Devel opnent of a conmon FRD that contains generic requirements that
can span multiple systems. These “common” requirements can then be
referenced in a system’s FRD rather than duplicating them.

» Participation in the development of system FRDs to help ensure
consistency between systems

» Identification of test plans for all requirements. These are not a

step-by-step procedure, but are outlines that describe the
functionality that needs to be tested.

4. |PTs have the following responsibilities:

e Each IPT is comprised of:
* System Knowledge personnel
* Software Production personnel
e Simulation personnel

* Refining the IPT charter

» Developing a detailed schedule

* ldentifying resource requirements

» Following processes and standards established for application
software

» Developing applications software products
* Software
» Documentation
* Procedures

3.4 AUTOVATED COMPONENT TESTI NG

RTC Application Software will make every effort to use automated COTS test
tools. Automated routines (developed in a test control language) will be
stored in a common library. The routines provide repeatable ‘difference
based’ methods to validate component software. Levels of test routines can
be created to test larger control ‘parts’. For example: software
production personnel will use scripts to test ‘atomic’ components, higher
level scripts will test assemblies, and even higher scripts will test
modules. Test scripts will be developed to test all paths available. This
hierarchy of automated test scripts enables all software involved in a
change to be fully tested in a minimum of time; unlike the CCMS
verification which typically only test the differences because of the
extensive manual effort that is involved.

3.5 | TERATI VE TESTI NG

Requirements verification testing at each phase is a key part of the CLCS
design philosophy. The first two phases are performed in the development
environment with subsequent phases moving to an operational environment.
Throughout the development process, informal testing will be performed to
make sure the desired operability is provided. This informal testing
ensures problem areas are addressed early in the development cycle. IPTs
will perform the following types of testing:

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
1. Detailed End Item Conponent (object) level testing will use automated
routines (where applicable) to test every path supported by the
component .
2. Detailed nodule testing will validate the functionality of assenbled
conmponent s.
3. Interface testing of the assenbled nmodules wll be perforned (again

using test scripts). The interface testing begins to test operational
control concepts. The CLCS transition strategy breaks this phase into
di stinct pieces: Integrated Application and Systens |ntegration. When
testing the Integrated Applications portion, nuch of the Systenms portion
i s exercised.

4. Validation tests are perforned to verify application functionality. The
scope of wvalidation wll change depending on the level of effort
required to implement the change and on the software component’s
criticality classification. For example, when the internals of a
component change (without affecting the external interfaces), the
component will be thoroughly tested and a minimal interface test will be
performed. Problems detected during validation will be documented and
tracked outside the formal PRACA system (using the Configuration
Management tool). Only problems not corrected prior to the software
being released as ‘“ready to wuse” wil require formal PRACA
documentation. When validation has been completed, the applications
component is considered ‘ready for use’.

5. The final level of testing is User Acceptance. User acceptance verifies
that the applications product not only implements the requirements, but
can be operated by the variety of system users. User acceptance
includes stand-alone, cluster and integrated simulation practice via a
simulation model. Problems detected in the User Acceptance phase
require formal documentation and remedial action. In the sustaining
environment, user acceptance is implied during the validation phase for
minor changes and, depending on the impact, may require formal
acceptance for a significant major change.

3.6 BU LT-1 N QUALI TY PHI LOSOPHY

The two previous sections set the stage for built-in quality. Each of the
five phases of testing uses informal and formal processes that help ensure
the delivered product meets requirements. A quality function is provided
as the formal check in the system. Details on the quality role are located

in the Application Development Process section.

In CLCS, the Application Software quality assurance function has been
redefined. Software quality transitions from the CCMS role of quality
checker to the CLCS role of quality verification. This is not meant to

down play the importance of quality in the CCMS environment. It is a re-

focus to make use of unique skills and to remove redundancy. This will
closely align the quality processing function of Product Assurance
Engineering (PAE) with that of Hardware Engineering (QE). The RTC
Application Software process utilizes quality assurance to:

Participate in the validation of critical and sensitive components
Participate in the validation of ‘common’ components

Identify regression test requirements

Verify test requirements (including regression testing) have been
satisfied

pODOE

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

5. Perform random audits of application test procedures to verify test
processing activities have been followed correctly

Common applications (those used by nmultiple systens) require a third party
(quality) test perspective. Quality support ensures the big picture is
covered, since system engineers may only be interested in their specific

appl i cation. It also provides the proper |evel of oversight to enable a
conponent to be used in critical and sensitive software w thout requiring
additional testing of the conponent. Critical application conponent

validation will also have quality oversight because of the requirenments to
ensure successful spaceflight.

Systens know edge personnel, along with software production personnel, wll
foll ow standard procedures to validate system specific applications. This
inplementation mirrors the Responsible Oganization Representative (ROR
i mpl erentati on used during shuttle Operations and Mintenance Instruction
(OM) testing. The ROR is responsible in ensuring the test procedure is
performed successfully. Quality will no longer be required to participate
in every application conponent validation.

Regression test identification moves under the quality umbrella. The ‘big
picture’ role places quality in the best position to ensure the appropriate
level of regression testing is performed. The mechanics of regression
testing are still under refinement.

3.7 VALUE ADDED METRI C GATHERI NG

Metrics are an important tool in understanding strengths and systemic
weaknesses in the applications cycle. Uncontrolled metric gathering tends
to impede efficiency (the process spends too much time just acquiring
data). Gathering the correct type of data, concisely, and applying the
data in a meaningful manner adds value. Before a metric is instituted, a
rationale will be developed that defines why the metric exists, what the
metric is to measure (including weights) and how the metric is planned to
be utilized. As the Applications process evolves, metric rationale will be
reviewed and refined striving to obtain value. Throughout the metric
process, one-time ‘perturbations’ will be captured, noted, but not factored

into the overall picture. Perturbations often skew meaningful data masking
the true reason behind the metric. Document 84K01730-103 describes the RTC
Application Software metric program.

3.8 MEANI NGFUL PRODUCT DOCUMENTATI ON

The RTC Application Software documentation structure has been created to
aid in all facets of change processing. Two products are part of each CLCS
CSCI: Functional Requirements and Software Design Specifications.

1. A Functional Requirements Document (FRD) will be created for each
Shuttle, GSE and Facility system (reference Appendix B for a list of
Application Software CSCIs). The FRD is developed using a COTS tool
(DOORS) to aid in organizing requirements and enabling linking between
requirements modules. In addition to the subsystem FRD’s, a common FRD
will be created to capture and store all reused items. Subsystem FRD’s
are implemented at the hardware functionality level (independent of the
organizational level).

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

2. There will be two levels of the Software Design Specification (SDS).
Each | evel addresses a different devel opnent need:

e The Overview Design Specification (ODS) describes the RTC Application
Software CSCI and all of its elenments. This docurment wll be
devel oped prior to the software producti on phase and will provide the
foundation for detailed design and coding.

e« Each element in the CSCI wll be identified along with a
description of its function and a high I evel design description.

* Interfaces between the CSCI’'s components will be defined.
* Interfaces between the CSCI and external elements will be defined.
« A cross reference between the FRD and the ODS.

This document, while providing a good summary of each program in the
Application Software CSCI, requires less frequent updating than the
CCMS equivalent.

* The Detailed Design Specification (DDS) will be generated from in-
line comments in the source code using an auto-documentation tool.
This documentation will be generated for web-based viewing and will
not be printed. This is the information on the implementation
techniques and reasoning that belongs primarily in the developer's
world.

The redlining of application software documentation “for approval” will be
reduced significantly. Configuration mechanisms will be implemented that
allow direct input of redlines into the document. In CCMS, the maintenance
effort of redlined original is significant, documents are often redlined

years before the software implementation is scheduled. In CLCS, the
concept is to submit (or effect) the documentation change prior to the
release or acceptance of the product. RTC Application Software CSCls are
still required to produce documentation, it is now “formally” produced
later in the development cycle.

The RTC Application Software documentation should be viewed in the context
in which it is intended: it reflects the final implementation of a
requirement (unlike other Shuttle program documents, which are used as
change drivers). Typically, RTC Application Software documentation is used
internally (although there may be external reviewers). For example: Space
Shuttle Operational Increment (OI) changes are external forces that ‘drive’

the development effort. The FRD and Specifications are the KSC
implementation of the external driver (FRD and Specifications have no
influence on the Ol change).

The RTC Application Software process requires significant ‘up-front’
effort, breaking the tendency to deliver a product, then fix it. The
Applications software effort revolves around value added repeatable
processes and procedures. The object is to do it once and to do it right

the first time.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
4,

This section describes the devel opnent processes used by RTC Application
Sof t war e. Applications software developnment in CLCS is fundanentally
structured for efficiency. The core processing flow applies to all
devel opnment efforts (including change drivers), it is, however, custoni zed
for different change types. The conplete process is wused for mgjor

development/internal changes and is streamlined for minor “operational”
changes. The use of distinct paths obtains a much needed balance between
productivity and process. NOTE : Since this section describes the process
for both new development and sustaining work in response to a change driver
(sustaining engineering), the term Statement of Work (SOW) will be used to
denote either type of request for software development.

There are four major processes used in RTC Application Software development
and sustaining. Figure 4-1 illustrates their relationship. DP-P-07-BASIC

RTC Application Software Flowchart provides a detailed flowchart
description of the development process.

Change Screen Panel Processing

IPT Statement of Work Assessment

IPT Statement of Work Implementation

Validation and User Acceptance

PR

CPRaessiy
csP
Saenat I

NewQCBEqEt

IPTSaenat o Wirk Assessmat
Determine Develop Launch Monitor/ ! FP
Impact Schedule Sequence Impact

Y

IPFSaarat a Wrk Inpenataian
Requirements I Rgmts Analysis - 5| Software Software Unit
Definition M Design Production Test
IPNAlicition&Lser Acog ace

. User
Velidation Acceptance

Figure 4-1 RTC Application Software Development Process Overview

4.1

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

CHANGE SCREEN NG PANEL PROCESSI NG

The Change Screening Panel (CSP) is responsible for determning which RTC
Application Software CSCls may have an inmpact to a change driver. The
functional structure of Applications requirenments and specifications wll
allow the CSP to query WEB based documentation starting from ‘common use

items’ then branching to system specific items. The CSP will route the

change driver to the IPT responsible for the affected CSCls, allowing

enough time for a response. In cases when the IPT cannot be identified or

when the change driver is multi-system, the package will be routed to the

APT for disposition. The APT is responsible for the disposition of

integrated change drivers to (1) the appropriate IPT or (2) forming an IPT

to work the integrated issue. All change driver implementation is

performed at the IPT level.

During the CLCS development phase, the CSP will use the existihg CCMS
process to determine which Application Software Working Teams ASWT(s) will
assess the change driver. In addition to the required CCMS routing, the
change driver will be forwarded to the APT for information only. The APT

will distribute the package to the appropriate IPT. The IPT is responsible

for incorporating any change driver into RTC Application Software products
when that change driver has an effectivity before the IPT's target
application delivery date. When a change driver has an effectivity after

the IPT delivery target, the RTC Application Software change processing
model will be used to provide traceability, accountability, and cost
tracking.

4.2 | PT STATEMENT OF WORK ASSESSMENT

After receiving a SOW, the IPT will assess the package for impacts to their
associated CSCls. To develop this assessment, the IPT will determine and
document the following:

e Scope (i.e., extent of the effort)

* The criticality of the SOW using the criticality of the software
components involved in the package. The SOW criticality is based
on the highest level of the software criticality affected.

* Manpower and resource requirements (ROM estimate). It is not
necessary to identify each component affected at this point of the
process.

* Implementation schedule that satisfies the SOW milestone

* Interfaces with other IPTs (e.g., GLS IPT lead when the SOW
affects launch monitoring/sequencing functions)

There are two levels of approval processes for the SOW based on the SOW
source and the level of effort required to implement the SOW requirements.

4.2.1

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Maj or Statenment of Work Assessnent

For major SOW driven by an external source (from Level 3 or other design
centers), the IPT will performthe assessnent and forward the docunentation
(signed by the IPT core nenbers) to the APT and Configurati on Managenent.
I mpl enentation can proceed w thout further approval (since the SOWN has
al ready been approved by a higher authority).

For all other major SOM, the IPT will perform the assessnent and present
it, along with rationale for the SON to the Application Software Change
Revi ew Panel (ACRP). The ACRP will determne if the SOW neets approval
criteria. Inplenmentation cannot proceed w thout ACRP approval.

4.2.2 Mnor Statenent of Wrk Assessnent

For both externally and internally driven mnor SOM, the IPT will perform
the assessnment and forward the docunentation (signed by the IPT core
menbers) to the APT and Configuration Managenent. | npl enentation can
proceed w thout further approval. A followup report to the APT will be
requi red, docunenting the actual time spent on the SON |If, during the SOV
inpl ementation, it is determned that the manpower expenditure wll be
greater than thirty man-hours, the IPT nust re-assess the SOW and obtain
APT approval .

4.3 REVI EW PANELS

Two milestone reviews are inplenented to ensure application goals are
addressed. The ACRP is the first process in the SOWinplenentati on which
provides initial insight into the SOVNinpact. A Requirenents Review Panel
(RRP) is the IPT's presentation to the APT that finalizes the impact

assessments (both manpower and resources). The RRP occurs after the

Requirements Capture and Analysis phases are complete before actual

software development starts. This is not another approval point, but

rather a means for the APT to ensure the SOW is on-schedule and that

sufficient resources are available for assignment to the IPT to meet their

schedule.

4.3.1 Application Change Revi ew Panel

The Applications Change Review Panel is the first step of the development
process. This is where the concept of a SOW is presented, with rationale,
scope and estimated implementation costs, for approval to proceed. This
panel requires only a minimum of effort be expended before presentation to
the panel to potentially avoid unnecessary work. The panel's primary
responsibility is to ensure the SOW meets the requirements of the program,
that the SOW rationale meets acceptable criteria and that the estimated
cost can be absorbed by the available budget and manpower resources. The
board is not responsible for ensuring the technical content of the SOW is
correct. This is the responsibility of the presenting IPT. After approval

by the ACRP, no further approvals are required to proceed.

During the CLCS development phase the ACRP function is performed by the
CLCS Systems Engineering and Integration (SE&I) Team. The CLCS Concept
Design Panel (CDP) is the development version of the ACRP. The CDP is a
formal presentation of delivery thread requirements and initial assessment

to the CLCS Design Panel. The APT, in coordination with the IPT Lead
assigned to the delivery thread, is responsible for coordinating,
developing and presenting the IPT concept to the CDP. This presentation
validates that all high-level information is in place to understand and
implement the thread requirements identified in the CLCS Delivery Document.

84K00070-002 RTC Applications Software Development Plan

This is the APT’s “tag-up” that the CSCls to be developed falls within the
overall scope of the CLCS project.

The ACRP (or CDP)

* Ensures developers understand the scope of work

* Confirms developers understand the delivery requirements and the IPT
charter (applicable to the CLCS development phase only)

« Coordinates issues and relationships with other threads/capabilities

* Confirms identification of impacted CSClIs and dependencies on other
CSCls

* Coordinates risk issues and risk management efforts

Required products for the panel:

* Presentation material developed using the CLCS Concept Design
Panel template (reference 84K00070-100 CLCS System Software
Development Plan Appendix A)

* Preliminary implementation schedule
* Preliminary assessment (list) of affected CSCls

* Preliminary assessment of required resources (ROM estimate of
effort and other required resources)

4.3.2 Requirenents Review Panel

The Requirements Review Panel (RRP) is the primary review given to an IPT’s
activities (that has project level visibility) prior to entering the
implementation phase of development. It is not a technical review of the
functional requirements since the associate Shuttle Engineers have the best
knowledge in that area. Instead, it is a review of the progress made to
date and of the implementation phase planning.

The goals and objectives of the RRP are:
* Ensure required products have been completed
* Review of the software element allocation
* Review and approval of the software classification assignments

* Review and approval of the implementation schedule and resource

allocation request
* Verify that an internal technical review was conducted

« Review of the CSCI identified external interfaces to ensure
compatibility across all Test Set CSCls.

« Discussion of any issues the team needs addressed by the APTeam

Prior to the RRP, the IPT (or the CSCI leads as a minimum) shall have an

informal requirements review with the affected Shuttle Engineering
subsystems. This meeting should be a technical review of the requirements

to ensure they capture the appropriate operational knowledge.

4.3.2.1 Menber shi p
The RRP membership is comprised of representatives from Shuttle Engineering
and RTC Application Software Engineering.

* APTeam USA Shuttle Engineering Representative (co-chair)

« APTeam USA Software Engineering Representative (co-chair)

* APTeam NASA Software Engineering Representative (co-chair)

* NASA CLCS User Liaison Representative

e USA CLCS User Liaison Representative

Revision: Basic
May 12, 1998

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

The RRP is an open forumand any interested individuals may attend as
desired. Meeting minutes, action itens and results will be posted to the
RTC Application Software web site.

4.3.2.2 Requi red Products

Prior to scheduling the RRP, the IPT shall have the follow ng docunments
avail able for review These products should be avail able for on-line
viewi ng (hard copies are not required).

1. Functional Requirenents Docunent (FRD) for each CSCl associated with the
I PT (input into DOORS using the approved FRD tenpl ate)

2. Prelimnary Overview Design Specification (ODS) for each CSCl associ at ed
with the I PT (input into DOORS using the approved ODS tenpl ate)

3. Initial Requirenents Traceability Matrix (generated from DOORS after
requi renents have been allocated to software el enents)

4. Refined, fromthe Concept Design Panel baseline, planning schedule
(formatted per 84K01730-107 Devel opnent Schedul e Practice)

5. Detailed Inplenentation Schedule (to the software nodul e/ conponent
level) formatted per 84K01730-107 Devel opnment Schedul e Practice

6. Resource requirenents statenent identifying the nunber and type of
personnel required for inplenentation and testing, including the time-
franes required

4.3.2.3 RRP Process
The fol |l owi ng paragraphs descri be the RRP process.

1. During the initial IPT Statenent of Wrk assessnent, the |IPT wll
estimate a date for the RRP. This date will be added to the RTC
Application Software naster schedule to provide insight into I PT
activities.

2. Since RRP neetings are not held on a regular basis, it is incunbent upon
each I PT to coordinate a neeting tine with the RRP nenbershi p whenever
the IPT is ready for the review. This coordination should be done
approxi matel y one week in advance of the requested date.

3. At the RRP, the IPT lead will present the followi ng informati on. The
format for the presentation is at the discretion of the IPT | ead, but
the specified information nust be covered.

e An FRD overview
e Describing the capabilities specified by the requirenments
e ldentification of any subsequence FRD activities

e An ODS overvi ew

e Describing the mapping of the requirenents into the RTC
Application Software architecture

e ldentification of Critical and Sensitive software nodul es
e Overview of the inplenmentation schedul e and resource requirenents

e Overview of the validation approach (e.g., facilities required,
resources, special tests)

e Discussion of OM update planning

84K00070-002 RTC Applications Software Development Plan

4. Upon acceptance of the RRP presentation:

Revision: Basic
May 12, 1998

« Al FRDs will be placed under infornmal Configurati on Managenent
control This establishes the requirenments baseline for the effort

whi ch can then be nodified per the SDP process.

« Al OBSs will be placed under infornmal Configurati on Managenent
control. This establishes the design baseline for the effort

whi ch can then be nodified per the SDP process.

e The inplenmentation schedul e and resource requirenments statenent
will be added to the RTC Application Software master schedule for

t racki ng.

Note: Placing the FRD and ODS under informal Configuration Managenent
control provides the ability to indicate to the project that a major

m | est one has been acconplished and al so provides the ability to gather

requirenents and design related netric information. The IPT wll

still

have the ability to easily nodify these docunents during the renai nder of
the devel opment effort. Final approval and formal Configuration Managenent

control will be inposed prior to conpletion of the validation effort.

4.4 | PT STATEMENT OF WORK | MPLEMENTATI ON

At the time specified by each APT’s master schedule, the IPT will implement
the applications software SOW. The process to be followed is based on the
level of effort (major or minor) necessary to implement the SOW.

1. A major SOW requires significant up-front work to ensure the timely
product delivery. Review panels are strategically used to ensure the
process is on track (ref Table 4.4-1). The implementation process is
composed of five major components:

* Requirements Definition and Capture
* Requirements Analysis and Allocation
* Software Design

» Software Production

e Testing

2. Minor SOWs combine the implementation processes that are required for
major SOWs. The ease of minor SOWs allows a single requirement
processing phase and the combination of software production and test.

Both the ACRP and the RRP are not used in minor SOW processing because
of their straight-forward nature. The following processes apply to
minor SOWs:

* Requirements modification

* Software Analysis and Design
» Software Production

e Testing

Table 4.4-1 defines when each of the application implementation processes

is required. Minor SOWSs have identical processes. Major SOWSs differ in
the ACRP requirement. The ACRP is not required for external SOWs because
RTC Application Software has no choice but to accomplish the task.
Internal SOWSs require ACRP review to ensure the potential project is
workable, given the resources available. The implementation details are
described in the next five subsections. Validation and User Acceptance are
described in section 4.5.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
Statement of Work
Ext er nal I nt er nal
S/ W Process Maj or M nor Maj or M nor
Ef fort Effort Effort Effort
App Change Revi ew Panel Not Not Yes Not
Requi r ed Requi r ed Requi r ed
Requi rements Capture Yes Singl e Yes Singl e
Requi renments Anal ysis Yes Process Yes Process
Requi rement Revi ew Yes Not Yes Not
Panel Requi r ed Requi r ed
Sof t war e Desi gn Yes Singl e Yes Singl e
Sof t war e Production Yes Process Yes Process
Unit Test Yes Yes
Validation (ref 4.5.1) Yes Yes Yes Yes
User Acceptance (ref Opt i onal Not * Not
4.5.2) Requi r ed Requi r ed

Table 4.4-1 RTC Application Software Process Requirenents
*User Acceptance is required for all products delivered during CLCS
devel opnment. User acceptance applicability is determ ned by the I PT during
t he sust ai ni ng node.

4.4.1 Requirenents Definition and Capture

To provide a solid foundation for a RTC Application Software CSCl, it is
necessary to develop a set of functional requirements that detail the
functions, capabilities and expectations of the software.

1. The FRD will be based on the operational characteristics of the
vehicl e/ GSE system Pot ent i al resources for obtaining these
characteristics are system Function Designator |istings, hardware
operating specifications, schematics, LCC/ OVRSD docunments and GOAL
requirenents. | PT system knowl edge and operational experience are
critical to ensuring the necessary functionality is captured.

2. The FRD will be developed using a nethodology that describes the
requirenents in ternms of physical world objects.

3. The IPT Lead will remain cognizant of other active IPT activities (via
an integrated IPT forun) to be aware of common requirenments that could
be reused. The Conmmon Applications Library wll be searched for
potential requirenments reuse.

4. The FRD wll be formatted per 84K01700, RTC Application Software
Docunent ati on St andard.

4.4.2 Requirenents Analysis and Allocation

The Requirenents Analysis and Allocation phase is a process where the |IPT
transforms the functional requirements into a software inplenentation
framework. The activities of this phase include:

1. ldentification and coordination of all external interfaces between the
CSCl under devel opnent, other CSCls and the CLCS system The |PT
coordinates with the APT to work system i ssues.

2. Generation of “use cases” and scenarios that illustrate the functional
requirements and the interaction between objects and events.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

3. ldentification of potential design/code reuse conponents (from both the
supplier and user viewpoint).

4. A location of the functional requirenments to the identified CSC CSUs,
based on the above analysis activities. A cross-reference between the
FRD and the ODS is devel oped during this phase.

5. Devel opnment of a prelimnary ODS to capture the analysis results that
apply to design issues and design allocations. The ODS wll be
formatted per 84K01700, RTC Application Software Docunentation Standard.
The IPT will assign criticality to CSCs and CSUs.

4.4.3 Software Design

Using the FRD and the prelimnary ODS devel oped during the requirenent
phases, a nore detailed overview design of the CSCI can be devel oped. The
design will adhere to the RTC Application Software Architecture Standard
(84K01710). The activities of this phase are:

1. ldentification and specification of the classes and objects necessary to
i mpl emrent the functional requirenents. The use cases/scenarios are used
as the starting point for this activity. RTC Application Software
Docunentation Standard 84K01700 provides exanpl es of required
docunent ati on fornmats.

e Class descriptions are enhanced when necessary, by state
transition diagrams to help define the class’s activities.
e The classes/objects are scrutinized to identify commonality
between objects to support generalization of those objects to as
common a base class as possible. Inheritance attributes and
methods are also identified during this activity.

2. ldentification and specification of the inter-process communications and
system interactions. Objects are mapped to the major architectural
elements, which assists in the detailing of necessary communication
paths.

3. Use cases/scenarios are refined until they contain sufficient
information to allow coding.

4. The ODS is updated to capture the design activiies and class
specifications.

4.4.4 Software Production

During the Software Production phase, the overview design is transformed
into software code and associated documentation. Software developers write
the code, perform peer reviews and perform preliminary debug testing during
this phase.

4.4.4.1 Overvi ew

With the RTC Application Software CSCI functional requirements allocated to
individual CSCs/CSUs and the detailed design established, the production
phase can begin. The following processes apply:

1. Implementation of each CSC/CSU will be performed using the toolset
identified for the CSC/CSU’s class of software (e.g., display, object
command/control). Reference Section 4.4.4.3.

2. All implementation will adhere to all the applicable programming
standards. Reference Section 4.4.4.2.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

3. The common starting point for all software developnment is a search of
avai l abl e reuse resources for conponents that can be used to accelerate
devel opnent and enhance naintenance. If a conponent matches the
i mpl erentation needs, it wll be used. The ODS will be updated to
reflect those conmponents used.

4. Requirenments traceability will be shown in both CSCs and CSUs (e.g., in
a header comment) as well as in the Requirenents Traceability Mtrix.

5. Prior to exiting this phase of developnment, each CSC/ CSU must be
subjected to a peer review to detect any defects of inconsistencies and
to ensure reuse resources were used to the maxi mum extent possible.
Detection of problem areas during this phase is crucial to tinmely RTIC
Application Software CSCI devel opnent.

4.4.4.2 Code Witing

Devel oped application software code wll be conmpliant with all CLCS
Sof tware Progranm ng Standards and Guidelines. Code generated by a COIS
tool may be exenpt from this requirenment; check the standard for exenpt
requirenents.

84K00230 CLCS HCl Style @uide and Standards
84K07500- 010 CLCS Programmi ng Standard
84K01720 RTC Application Software |Inplenmentation
St andard
4.4.4.3 Tool s and Languages
Al RTC Application Software wll be developed using object-oriented

met hodol ogy. Table 4.4-2 defines the application software tool s/l anguages.

Appl i cation conponent Tool / Language
Di splay Mnitors (with active data SL-GWs | C++
di spl ay)

Di splay Monitors (w thout active data SL-GWs / Java /[C++
di spl ay)

End |Item Managers Control Shell / C++
HCI Over head Software Java

CCP Over head Software C++

Edi t or Xemacs

Docunent ati on Auto Generation DOC++

Requi rements Capture/ Definition DOCRS

Confi gurati on Managenent Razor

Docunent ati on MSOF fi ce Products

Table 4.4-2 RTC Application Software Tool s and Languages

4.4. 4.4 I nspecti on Process

Prior to exiting the production phase, all new or nodified conponents will
be subjected to inspection. During the design phase, each CSC/CSU is

identified with a criticality classification. This designation wll be
used to determine the inspection type required. A review requirenent
summary is listed in table 4.4-3. Docurent 84K01730- 104 defines the RTC

Application Software Peer |nspection Practice.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998
Type of Conponent affected
Change Effort Critical Sensitive Oper ati onal
Maj or Peer Inspection Peer Inspection Peer | nspection
M nor Peer | nspection Wal k-t hr ough Wl k-t hr ough
Tabl e 4.4-3 RTC Application Software Code Review Matri x

4.4.4.4.1 Peer Inspections
For criticality | and 1l software (critical and sensitive), a peer
i nspection is perforned by a group (two or nore) of know edgeabl e software
production personnel. This inspection is nore formal than a wal k-t hrough,

in that review materials are distributed ahead of time and a schedul ed
nmeeting is held. The witten inspection results contain both positive and
negative findings, along with the reviewers nanmes and inspection date(s).
Any rework necessary is coordinated between the author, the inspection
| eader and the applicable |IPT software focal point.

4.4.4.4.2 Wal k- Thr oughs

For Criticality 11l software (operational support conponents), a code wal k-
through will be performed by soneone knowl edgeabl e about the code (not the
aut hor) designated by the IPT software focal point. The wal k-t hrough

provides the opportunity for a second look at the code to identify any
i nconsi stencies or coding problens. Any rework necessary is coordinated
bet ween the author, the reviewer and the software focal point.

4.4.5 Testing

4.4.5.1 Unit Testing

Unit testing is an informal process perfornmed on software conmponents and
progranms to check their general functionality and performance in a stand
al one node or with other prograns in a debug environnent. The purpose of
Unit Testing is to debug the software to a degree that it can enter
integrated testing with no functional errors.

Unit Testing is the responsibility of the software devel oper. User
participation is encouraged to provide wearly insight into software
functionality and performance. Quality Assurance is not required.

Probl ems encountered during Unit Testing are not required to be docunented.

1. Unit Test cases will be developed to perform “black box” or functional
testing.

2. Test cases will check both normal and error conditions for each input
parameter.

3. All Unit Test cases will be maintained in the Configuration Management
common repository for future regression testing.

4. For each code change, the associated Unit Test case will be modified as
necessary and then performed successfully before the CSC/CSU can be
incorporated into the integrated product. Test outputs should be
identical to previous tests for all areas not affected by the change.

84K00070-002 RTC Applications Software Development Plan Revision: Basic

May 12, 1998

5. Test results will be maintained in a comon repository to provide for
compari sons after followon tests.

6. Unit Test cases wll be performed on both un-optimzed (debug) and
optim zed (production) versions of the devel oped source code. Test

results shall be identical.

Unit testing is performed on an “as needed” basis throughout the
component's life cycle. All newly developed software regardless of
criticality will go through Unit Testing. Unit Testing should check the
software’s functionality including logic and algorithm implementation.
Unit Test of reused software should check the interfaces with other
software components.

4.4.5.2 Integrated Testing

Integrated Testing is an informal process performed on software to test
functionality and performance in an integrated environment with other
software components against simulation software and/or a hardware test bed.
The purpose of Integrated Testing is to ensure that the software has no
known functional and performance problems prior to entering the Validation
phase and that the integrated software implementation is acceptable to the
software developers. The Integrated Testing environment should approximate
the actual real-time operational environment as closely as possible. The
complete suite of RTC Application Software which will be used by the
subsystem (that is available) should be loaded as well as any other
interfacing software. Development or validated simulation software may be
used. Integrated Testing may be performed against a hardware test bed
(e.g., SAIL, KATS) if deemed appropriate.

Integrated Testing is the responsibility of the software developer. User
participation is highly encouraged. Integrated testing offers an excellent
opportunity for user familiarization of the software prior to validation
testing. Quality Assurance is not required. Problems encountered during
Integrated Testing will be documented in the informal tracking system of
the Configuration Management Tool. This will provide a history of unit
test thoroughness and completeness. This problem tracking is internal to
the IPT and does not require special approval for closure.

Integrated Testing will be performed on software when the required
components have completed a level of Unit Testing acceptable to the IPT.
All newly developed software regardless of criticality is required to go
through Integrated Testing.

Integrated Testing should check:

» software functionality

* real-time performance

e user interfaces

* interfaces with reused software components

* interfaces with System Software

* interfaces with other RTC Application Software CSCls
« interfaces with end item components

4.5

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

| PT VALI DATI ON AND USER ACCEPTANCE

The final process in the delivery of applications software is the form
validation and user acceptance perforned by systens know edge personnel
Depending on the change effort and the change criticality, there are
different quality support requirenents. Validation is a formal process
that results in a product that could be used to control hardware. User
Acceptance is a nmethod that uses validated software to build confidence
before using the product on flight hardware.

4.5.1 Validation

Validation is the fornal process performed on software to test
functionality and performance in an integrated environnent wth other
sof tware conponents agai nst sinulation software and/or a hardware test bed.
Validation ensures the applications software has no known functional or
performance problens and that the software inplenmentation is acceptable to
the users. Once software has successfully conpleted Validation, it can be
used in an operational environnment. The Validation environnment should
approximate the actual real-tinme operational environnent as close as
possi bl e. The conplete suite of RTC Application Software which wll be
used by the subsystem should be | oaded along with all interfacing software.
Validated simulation software and system software are required to support
the RTC Application Software validation phase. Validation may be performnmed
agai nst a hardware test bed (e.g., SAIL, KATS) when deened necessary by the
| PT.

Validation is the responsibility of System Know edge personnel, wth
assi stance from Software |nplenmentation as required. Quality is required
to support validation for changes to all critical conponents. The IPT and

quality assurance wll work together to determne the applicability of
quality oversight for mnor sensitive changes. Quality support
requirenents are listed in Table 4.5-1
Type of Conponent affected
Change Effort Critical Sensitive Qper ati ona
Maj or Quality Quality Not required
Requi r ed Requi r ed
M nor Quality Quality Not required
Requi r ed Opt i onal

Table 4.5-1 Validation Quality Support Requirenents

Probl ens encountered during validation will be docunmented internally in the
informal tracking system of the Configuration Managenent Tool. This wll
provide a history of unit test thoroughness and conpl eteness. Formal PRACA
docunentation will be required for problens:
e that will not be corrected prior to release to an operationa
envi r onnment

e that are detected in previously validated software or conponents.

Docunentation of test procedures used and the test results are required
(reference Application Software Docunentation Standard 84K01700).

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Validation will be perfornmed on software when conponents have conpleted a
level of Unit Testing and Integrated Testing acceptable to the |PT. Al'l
software regardless of criticality is required to go through Validation.
Val i dation should test:

e software functionality

e real-time performance

e user interfaces

e interfaces with reused Application Software

e interfaces with System Software

e interfaces with other Applications Software CSCls
« interfaces with end item conponents

4.5.2 User Acceptance

User Acceptance is a systematic approach by which the user conmunity gains
the experience and builds the confidence in the application (and system
product. User Acceptance culmnates in the global use of the application
software and underlying system software for vehicle processing. In the
devel opment phases of CLCS, user acceptance criteria will be identified by
both the IPT and by external sources. External sources include senior
Shuttle technical representatives who wll formally identify user
acceptance requirements to the CLCS project.

User acceptance requirenents could include, but is not limted to, such
items as:

e Simul ated power up/down (via simulation nodel / SAIL)

e Simulated Cryogeni c tanking

e Simul ated Launch Countdown (via sinulation nodel / SAIL)
 Actual PAD cryogenic cold flow

e Actual Obiter power up/down

e Simulated cluster test using the sinulation nodel

e Simulated cluster test using SAlL/KATS

An exanpl e user acceptance process:
* Assure the hands on (engineering user) is famliar with the
application product
e Use the applications product to performnom nal testing using
si nul ati ons

e Use the application to perform conti ngency operations using
si mul ati ons

e Denonstrate the process against hardware (using Test Preparation
Sheet (TPS) or tenporary deviation)

« Mdify test procedures, as required, for CLCS applications

e Performa reviewto verify: famliarization, acceptance testing,
and procedure nodifications are conplete

* “Accept” (i.e., release) the product for daily operational support

The specific software undergoing formal user acceptance should be
validated. Quality support is not required during this phase. Any system

or application problems encountered during the acceptance process will be
documented on formal Problem Reports (PRs) by the person detecting the
anomaly. As in all formal reporting systems, the PR must be dispositioned
appropriately (i.e., constraint, no constraint and rationale) before
application product release.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Val idated sinulation software is not required during acceptance testing.
This allows flexibility in the acceptance phase to exercise far fetched
test cases. It also allows for increased user familiarization wthout
incurring the cost of formally validating test cases within the sinulation
system Traceability is provided by the configurati on management system

Many of the processes in user acceptance are acconplished during the test /
val i dati on phase. For exanple, nominal and contingency paths are tested
extensively during validation. User acceptance is not designed to be
“testing”, instead it is a method of building confidence that, those who

are required, can operate the applications software. The iterative

approach used in the applications process should resolve every error before

this phase.

In the sustaining environment, user acceptance is typically implied as the
product completes validation. For major changes to an application, the
IPT will determine the requirements for user acceptance. The IPT,
management and the user community must be comfortable with the applications
product before it is released for day to day use.

84K00070-002 RTC Applications Software Development Plan

A. GLOSSARY

ACRP
APT
CCMS
CLCS
COTS
csc
cscl
CSP
csu
DDS
FRD
GOAL
GSE
HCI
HIM
PT
V&V
KATS
KSC
LCC
NASA
oDS
oM
OMRSD
PAE
PRACA
QE
ROM
ROR
RRP
RTC
SAIL
SDP
SDT
SEMP
SFOC
SOW

Applications ConceptReview Panel
Application Software Product Team
Checkout, Control and Monitoring System
Checkoutand Launch Control System
Commercial Off The Shelf

Computer Software Component
Computer Software Configuration ltem
Change Screening Panel

Computer Software Unit

Detailed Design Specification

Functional Requirement Document
Ground Operations Aerospace Language
Ground Support Equipment

Human Computer Interface

Hardware Interface Module

Integrated Product Team

Independent Validation and Verification
Kennedy Avionics TestSet

Kennedy Space Center

Launch Commit Criteria

National Aeronautics and Space Administration
Overview Design Specification
Operations and Maintenance Instruction
Operations and Maintenance Requirement Specification Document
Product Assurance Engineer

Problem Reporting and Correction Action
Quality Engineer

Rough Order of Magnitude

Responsible Organization Representative
Requirements Review Panel

Real Time Control

Shuttle Avionics Integration Lab

Software DevelopmentPlan

System Design Team

System Engineering Management Plan
Space Flight Operations Contract
Statement of Work

Revision: Basic
May 12, 1998

84K00070-002 RTC Applications Software Development Plan

B. RTC APPLI CATI ON SOFTWARE CSCl

The following table contains the official RTC Application
names and descri ptions.

csci Description
CAS Common Application Support

APU Orbiter Auxiliary Power Unit
ARM Swing Arms

BAP SRB Auxiliary Power Unit

BHY SRB Hydraulics

BRS | SRBRange Safety System
CME |Main Engine Controller

COM |Communications

DPS Data Processing System

ECL EnvironmentControl and Life Support
ECS Environmental Control System
EFC | Electronic Flight Controls

EPD Electrical Power Distribution and Control
FCP PRSD/FC

GID Guidance

GLS Ground Launch Sequencer
HMF Hypergolic Maintenance Facility
HWS Hazardous Gas Warning System
HYD Orbiter Hydraulics

ICE ET Surface Ice

INS Instrumentation

INT Integrated Operations

KUB KU-Band Radar

LH2 Liquid Hydrogen

LO2 Liquid Oxygen

MEQ Mechanisms

MPS Main Propulsion System

MST Master

NAV Navigation

OMS | Orbiter Maneuvering System
PLE Payload Test

SME |Space Shuttle Main Engine
WAT FIREXWater

CCS Complex Control System

Revision: Basic
May 12, 1998

Sof tware CSCl

